年7月,为构建开放协同共享的人工智能医疗器械创新体系,推进人工智能医疗器械审评审批,人工智能医疗器械创新合作平台应运而生。半年光景,人工智能医疗器械创新合作平台已经做出了一系列成绩。
在年的尾巴,由人工智能医疗器械创新合作平台、中国信息通信研究院主办,国家药监医疗器械技术审评中心支持,海南省药品监督管理局、海南博鳌乐城国际医疗旅游先行区管理局、博鳌生态软件园承办的“年人工智能医疗器械创新大会暨人工智能医疗器械创新合作平台工作会议”在海南博鳌成功召开。
人工智能医疗器械创新合作平台众多工作组管理人员齐聚于此,纷纷分享了所在工作组的工作推进情况,并对年的相关工作提出展望。
在此,动脉网记者对会议的部分内容进行了梳理,尝试帮助医疗AI从业人员理清药监局审评审批近半年来的方向与进展,以及审评审批中出现的各类问题。
创新平台整体结构不变,新增两个工作组
12月27日晚,创新合作平台管理委员会召开会议并通过了以下决议:
1.修订《人工智能医疗器械创新合作平台标准操作规范》;
2.讨论通过《人工智能医疗器械创新合作平台成员单位管理办法》、《人工智能医疗器械创新合作平台登记单位管理办法》;
3.讨论通过新工作组成立方案。
相比于7月公布的组织结构,我们可以看到人工智能医疗器械创新合作平台新增了医疗数据应用技术研究组、医学人工智能名词术语规范化工作组两个全新工作组。
值得注意的是人工智能医疗器械创新合作平台副秘书长张雪丽提到的成员单位制度与登记单位制度,她表示:“在能够遵守平台义务及管理办法的前提下,机构可与器审中心签订合作协议成为成员单位。成员单位所享受的权益包括推进管理委员会的委员;申请成立工作组;并可根据自身能力加入相关工作;参与平台相关活动;能够对平台提出意见与建议。
凡是中华人民共和国境内注册的医疗单位科研院所社会团体,可以在创新平台上登记相关信息,说明自身技术、特点、资源优势以及可以承担的工作方向,平台秘书处会对信息进行审核并给予反馈,审核通过后可备案成为平台的登记单位。
此外,登记单位如果收到了工作组的邀请,可以参与相应工作,也可以申请参加研究项目,并获得指定公开资料。”
由此可见,医院,大学,还是医学人工智能企业,能够加入创新平台必然会对机构本身的AI研究工作产生一定的积极影响;人工智能医疗器械创新合作平台同样非常欢迎各界组织能够参与医学人工智能的研究。
数据安全、标准规划……众多工作组在AI审评审批推进中都发挥了怎样的作用?
在本次会议中,技术法规、数据治理、测评数据库等10个工作组均参与了工作汇报,动脉网挑选了7个与医学人工智能产业发展最为相关的组别进行介绍。
1技术法规与标准化研究
技术法规组的工作主要为研究人工智能医疗器械全生命周期监管的政策、法规和方法以及研究利用人工智能技术实现医疗器械科学监管的方法,国家药监局器审中心审评一部副部长彭亮表示,该工作组基本思路包括三点,而也正是这三点思路指导了人工智能医疗器械审评思路制定。
一、关于人工智能医疗器械审评指导原则体系构建问题,该组希望可以构建一个体系,引导企业做好产品申报工作,并对整个行业的发展提供技术支持。
二、深入探索分布式的人工智能医疗器械测评数据库的建库模式,该模式是现行状态下最优的模式。
三、人工智能医疗器械测评数据库采用条件评价:国家各部委、医疗各机构都在相关数据库的建设,但什么样的数据库可以作为测评数据库?这是一个值得思考的问题。所以,技术法规工作组需要制定相关采用条件,用以评价相关的数据库,把部分正在建设的数据库纳入测评数据库体系范围。同时这些数据库需要动态管理,保证数据库的相关条件能够持续保证用于人工智能医疗器械的确认。
目前,审评指导原则体系中的“深度学习辅助决策软件审评要点”、“医疗器械生产质量管理规范附录独立软件”等项目已经建设完毕,“人因与可用性”等部分仍在制定之中。
2测评数据库建设
测评数据库建设医院发展中心为主牵头,医院、医院、医院等单位共同承担工作组的推进工作,结合人工智能器械产品特点,工作组将紧紧围绕目前存在的数据治理、标准体系、测评技术、临床评价等热点和焦点工作,整合医疗机构的临床资源与数据资源,重点研究跨地区、跨机构、多模态的测评数据治理关键技术,深入开展多院区、多异构、多模态的测评数据库构建管理技术以及测评数据库安全开放技术的研发,建设符合人工智能医疗器械创新合作平台建设所需的测试数据库。
在年工作中,申康中心的工作仍以AI测试数据库的准备为主,其他工作包括推动智能影像在上海落地;技术研发基于人工智能的医疗数据创新应用平台;构建专科联盟中心组织架构,打造专科联盟中心下的专病研究中心;建设人工智能区域医学影像协作共享平台;并参与了相关人工智能应用的研发及测评技术的论证。
在即将到来的年中,申康中心将以研究和建成“人工智能+医学影像类系统的审评技术及专业数据库”,提升精准审评和质量监督能级水平为目标。具体工作将分为三大部分。
1.完善人工智能测评数据库的体系框架。从测评数据的标准化采集、数据标注、治理质控和安全共享等关键技术方面完善测评数据库体系框架,形成针对性的质控要求。
2.开展多院区、多异构、多模态的个性化构建管理技术的研究。
3.医疗人工智能测评数据库的采集工作,数据涵盖CT肺结节、眼底、心脏MRI、冠状动脉CTA、心电、CT骨折、脑MRI、CT肝等病种领域信息,进一步优化覆盖电子病历、医学影像、电生理信号等8种数据类型的医疗测试样本数据。
3真实世界工作组汇报
中国医学科学院北京医院主任医生于伟泓作为代表在本次会上谈到了眼科AI工作进展与年真实世界数据应用工作组的工作计划。
年,工作组建立了“中国糖尿病视网膜病变人工智能眼底图像标准数据库的建立”,已完成2万张糖网眼底图像的收集、整理,正在顺利标注;与体素科技、致远慧图、至真互联三家企业开展了3项眼科糖网AI产品临床实验,包括两项回顾性研究和一项前瞻性研究;启动北京科委“主要致盲性眼底的人工智能辅助筛查系统研究”课题;成立“中国眼科真实世界AI研究联盟”,并拟定眼底彩照数据标注与质量控制专家共识。
年,该工作组将全面推进组内各单位多学科的真实世界研究工作;特别